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Kurzfassung

Die Darstellung von komplexen dreidimensionalen Daten ist mit modernen Technologien kein
Problem mehr. Eine Herausforderung besteht jedoch in der Freilegung verborgener Objekte, oh-
ne den Kontext, in dem die Daten stehen, zu verlieren. In dieser Arbeit werden verschiedene
Ansätze dargestellt, welche für dieses Problem flexible und individuelle Lösungen bieten. Fer-
ner wird ein einfacher Algorithmus vorgestellt, welcher sich bestehender Ansätze bedient, um
verborgene Objekte sichtbar zu machen. Eine Implementierung dieses Algorithmus wird anhand
von VolumeShop, einem Visualisierungsprogramm zur Unterstützung visueller Forschung, kurz
erläutert.
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Abstract

Representing complex 3D data is no problem with modern technologies. The challenge is to
reveal data that is concealed by solid geometry and retaining its context at the same time. In
this thesis, several approaches are presented that deal with this problem by finding user-centered
solutions that are adjusted for each individual requirement. Moreover, a simple algorithm is
proposed that combines existing approaches to reveal occluded structures. Therefore, a descrip-
tive implementation of this algorithm is shown with VolumeShop, an application that flexibly
supports visualization research.
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CHAPTER 1
Introduction

Data visualization is an substantial part of computer graphics. To make the visualized data
easily examinable, user interaction plays an important role. Hence, the user should be able
to translate, rotate and scale the 3D object. As technology progresses, the ability to represent
highly complex objects increases. This arouses the desire to examine parts of the object in detail
and also regarding the individual parts within a specified context. Additionally, the examination
and analysis of the objects’ inner structures can also be of interest. For example in the medical
sector, having all the data digitally available to explore opens up plenty of possibilities. Hence,
the challenge is how all these data can be provided with a maximum of interactivity for the user
to be adapted optimally.

An idea is to let the user determine a region or a object of interest, regardless if this region
is already visible, concealed by a jacket, or simply occluded by another object. In case it is not
clearly visible, the jacket or the occluding object could simply be omitted, but this would also
cause the context to get lost. As the context can be of significant importance, this approach is not
eligible. In case the region or object of interest is already visible, the main aim of the user can
be to examine the individual parts of this region or object, or its connection and interaction with
the remaining objects. Again, without the context, the information can become less instructive.
Hence, the idea is to reveal the region of interest whilst keeping the context.

Illustrative visualization simplifies the representation of complex data. It does not concen-
trate on the photo-realistic representation of data, but on the graphic processing of data. Several
scientific approaches exist for the illustrative visualization. One idea is to simply lower the
opacity of the outer structures. In the medical sector, illustrative visualization plays an impor-
tant role. For example to reveal a brain, the approach would be to simply raise the transparency
of the skull and the skin respectively for making the parts of secondary interest semi-transparent.
This approach is called ghosting. Another approach, cutaway views, is to cut out parts of the
object to reveal the region of interest and at the same time retain important information about
the context. A different approach are so-called exploded views that unfold an object by breaking
it into multiple parts and shifting those apart whilst keeping the object of interest in the center.
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1.1 Motivation

This thesis examines several approaches to reveal regions of interest including inner structures of
complex 3D models. While revealing the regions of interest, these approaches retain the context
to be able to examine the region of interest in respect of its surroundings. Furthermore, Vol-
umeShop, an application for visualization research, is presented as a powerful tool to implement
various approaches to support a convenient level of examination of complex 3D data.

1.2 Problem statement and objectives

The implementation of high-level tools and satisfying various individual needs for examining an
object can be cumbersome and time consuming. Furthermore, with increasing complexity of an
object the rendering time can rise significantly as well. Therefore, an approach is demanded that
considers the need for user-interaction to define regions or objects of interest, and additionally
has an invariant computing effort for the rendering, regardless of the complexity of the object.

In Chapter 2, several existing approaches are being presented and analyzed. The operation
with VolumeShop and its concept is introduced in Chapter 3. A simple algorithm for revealing
occluded objects is proposed in Chapter 4.
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CHAPTER 2
Analysis of existing approaches

Exploring volume data and polygonal meshes is a complex task. Every research has different
points or regions-of-interest (ROI) and the methods to reveal those regions depend on the purpose
of the study. Hence, regions are classified by their degree-of-interest function (DOI) [11]. A high
DOI means a region is of high interest, a low DOI stands for a region of secondary interest.

There are three common methods for revealing occluded structures of an object:

• Transparency/Ghosted views

• Cut-away views

• Exploded views

2.1 Transparency/Ghosted views

These techniques do not discard any parts of displayed objects but let them vanish to a certain
degree. Hence, it lowers the opacity of certain data points. For example, the opacity of the
outer structure of an object is decreased so that the inner structure is revealed [5]. Increasing
the transparency of occluding parts makes ROIs visible but at the same time makes it difficult to
distinguish the several semi-transparent layers and identify their spatial composition [10].

Bruckner and Gröller [2] use a ghost object explicitly to preserve the context of illustrations.
When the user defines a ROI, several transformations can be applied to it while at the original
position, a faded version of the ROI will be visible. In their work, Bruckner and Gröller describe
a method with weighted membership functions for the background, ghost and selection respec-
tively to define the color of the resulting illustration. The opacity for a point is determined by
the grade of membership in the union of all sets.
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2.2 Cut-away views

Cut-away views, also called cutaways, reveal ROIs that are occluded by objects of secondary
interest. The latter are cut out in order to make the ROI visible [2][4][5][8]. Omitting the oc-
cluding regions increases comprehension of spatial relationships between the components. Also,
the position and orientation of ROIs are shown in context of their surrounding structures [10].

Li et al. [10] present a method based on the ideas that cuts are made in respect to their
geometry and that interactive exploration of the 3D models is strongly supported. Removing
parts of the object is handled carefully so that the user can mentally reconstruct the missing
geometry. Additionally, the cuts are view dependent. The farther a structure is away from the
viewpoint, the less is it cut. To increase interactivity the viewpoint and the cutting parameters
can be controlled by the user. Li et al. state that low-level controls like cutting planes that need to
be precisely positioned require a certain expertise from the user to reveal ROIs and thus should
not be used. In their approach, users can set any viewpoint and dynamically manipulate the
model with the mouse to define the ideal cut. Their system has two components. The authoring
interface and the viewing interface. While the authoring interface enables the user to adjust a 3D
model by several parameters, the viewing interface takes this adjusted model and lets the user
explore it. The latter gives the user the choice between direct manipulation or the usage of high-
level cutaway tools that automatically generate the cutaway. Cuts can be directly modified by
interaction with the mouse. The cut is resized by snapping the nearest cutting face to a surface
point, moving the position of the cut is possible either in only one dimension or in all three
directions at once. Also, multiple cuts at once can be accomplished by the use of an occlusion
graph1. The system updates all cuts by the inset constraints in both directions of the occlusion
graph. A fast method to expand or collapse cuts is by cutting out or closing entire layers of
structures. This can be achieved by clicking on a structure and all structures above or below in
the occlusion graph are cut out or closed. Cross-sectional surfaces are exposed by changing the
angle of the cuts. The degree of bevelling can be adjusted by the user with a slider. Subsequently,
the faces of the revealed structures turn to the viewer automatically.

Higher-level interfaces involve algorithms for automatically exposing target structures that
are pre-selected by the user. Therefore, the user selects a set of targets from a list. The system
then determines the cutting parameters and a viewpoint. All parts of the cutting volume above
a target structure in the occlusion graph are fully expanded, all parts below the target structure
and the target structure itself are completely closed. This step assures a maximum exposure
of the target structures. To preserve the context from occluding structures, the corresponding
cutting volume of each non-target part is being closed as much as possible regarding the inset
constraints and considering not to occlude target structures. For this step the algorithm traverses
the occlusion graph upwards, starting at the leaves. After finishing those steps, all non-target
structures are being desaturated to highlight the target structures.

An interesting approach for adaptive cutaways is presented by Burns and Finkelstein [4].
Their method allows interactive rendering of adaptive cutaways. It ensures that objects of interest
are not obscured by objects of secondary importance, so-called secondary objects. Depending

1This is a graph generated in respect to the viewpoint that defines the number of occluding structures to be
removed in order to become visible. An occlusion graph is assigned to each part of the model.
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on the position and the projection of the camera, the cutaways have to be adapted to guarantee
free sight of the objects of interest. The main part of the work is the depth image cutaway
representation. It is based on an approximation of the chamfer distance transform algorithm.
The depth values of the rendered back hulls of the objects of interests are used as an input. The
final result is a depth image containing the objects of interest and additional drill holes around
them with a certain slope depending on the camera position and projection. The depth buffer
is used for an additional depth check in the fragment shader, but the OpenGL pipeline only
supports one depth buffer. If a fragment of a secondary object has a depth value smaller than
the depth value in the cutaway depth image, it is discarded, because it would occlude objects of
interest. As a last step, the objects of interest are rendered without checking against the cutaway
depth buffer. The cutaway depth image must be computed every frame to ensure interactive
real-time cutaways. The approach has the following advantages:

• the shape of the cutaways is defined by the silhouette of the objects of interest

• the cutaway surface is view dependent

• the angle that defines the slope of the drill holes around the objects of interest can be
adapted

• multiple distant objects of interest have their own cutaways which can merge when the
objects converge

Special attention is drawn to the rendering of the cut surfaces of secondary objects. Because
the geometry is clipped, the secondary objects would have a hollow appearance. Therefore,
fragments of back facing polygons of the secondary objects are shaded according to the normals
of the cutaway shapes. As a result, the geometry cut appears as carved solid objects (cf. Fig-
ure 2.1). Slightly fading out ghost lines of the silhouette of the clipped polygons additionally
improve the perception of the embedment of the objects of interest.

Optimizing the visibility of important target sections by defining a DOI function is an ap-
proach introduced by Sigg et al. [11]. The user specifies a DOI function for either a polygonal
mesh or volume data that assigns a value of importance to each vertex or voxel. Additionally,
the shape and the maximum number of geometric primitives being cut out can be selected, but
those cutting primitives should be limited to pre-defined shapes in order to be comprehensible.
Sigg et al. provide the user with three kinds of shapes: cuboids, cylinders and spheres. Although
the user can select the points of interest, the exact position and size of the cutting primitives is
computed by the system. That means that the user roughly defines important regions while the
optimization is done by the system. For the optimization, the resulting image from the renderer
is used, what makes it easy to integrate it into existing rendering frameworks. The optimization
process is iterative. The most important step is the image analysis with the objective function.
It takes the viewing perspective into account. The image data is divided into two categories,
positive for the important parts and negative for the unimportant parts. To achieve a maximum
context for the ROIs the omitted data has to be minimized in those regions. The formula for
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Figure 2.1: Cut-away view with revealed objects of interest and shaded cut surfaces [4].

maximizing the objective function 2.1.

f(A,P ) : =
1

d

n∑
i=1

(α ·Ai,pos −Ai,neg)− β · V (P ) (2.1)

A is the image expressed in a pixel array of length d = width · height. Each pixel has an im-
portant and an unimportant part, pos and neg. V(P) measures the amount of omitted data of the
set of cutting primitives P. α and β define the weighting of the importance of the target part and
the surroundings. α regulates the importance of the target parts being shown, β defines the im-
portance for preserving the surroundings. In this approach, rendering settings like transparency
and shading are preserved as only geometry of the object of secondary interest is removed.

Knödel et al. present an approach with strong focus on user-modified cutaways [8]. For
cutting a model, they use four basic shapes: spheres, cubes, wedges and tubes. To perform the
actual cut, they use the principle of Constructive Solid Geometry (CSG) [6][7] algorithms that
creates the cut by intersecting shapes, taking the union of them or subtracting one shape of the
other.

Cut-away views are also used in combination with ghosting. This means that the region cut
out is replaced by a faded duplicate of the original. Features such as edges are attempted to be
preserved. Therefore, the ghost stands for the original region before cutting (cf. Figure 2.2) [2].

2.3 Exploded views

An exploded view reveals the ROI by moving away the surrounding objects into multiple direc-
tions. In case inner structures need to be revealed, the jacket is decomposed into multiple parts
before it is separated from the ROI. Also, cross-sections become visible [3]. The individual parts
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Figure 2.2: Cut-away view in combination with ghosting [2].

are separated from each other in respect to the global structure of the object as well as to the lo-
cal spatial relationships [9]. In contrast to ghosted views or cutaways, no contextual information
gets lost, but it may come to visual clutter, if every single part of the object is exposed.

A system for creating and viewing interactive exploded views of complex 3D models is
introduced by Li et al [9]. Their aim is a system that allows users to explore the spatial relation-
ships between specific ROIs. Target parts can be selected from a list in order to only expose the
target parts and not showing anything else from the object. Thereafter, the parts can be directly
expanded or collapsed to show a comprehensible spatial relationship. An iterative algorithm is
used to remove unblocked parts from the model and adds them to an hierarchical, acyclic explo-
sion graph2. Initially, all parts of the model are added to a set S. At each iteration, those parts
that are unblocked into at least one direction are determined and added to a set P. Further on, a
part p ∈ P is determined that requires the shortest distance to release itself from its adjunctive
parts. Within the graph, p is linked to its adjunctive parts with an edge and information about
the direction of the release, the explosion direction, is stored. Finally, p is removed from S.
When no more parts can be removed from S the algorithm terminates and the explosion graph is
complete. In case a part hierarchy exists, the explosion graph is divided into several overlapping
sub-assemblies that allow independent expansion and collapse of a subset of parts of the model.
For each sub-assembly an explosion graph is calculated by applying the algorithm described
above. Interaction is guaranteed by direct user controls and higher-level interaction modes. The
direct controls include animated expand and collapse, direct manipulation and riffling. With a
click of the mouse, the model is fully exploded or entirely collapsed. This is done in reverse
topological order with respect to the explosion graph to avoid that blocking constraints are vio-

2An explosion graph states the order in which parts can be exploded without blocking.
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Figure 2.3: Conditions for the moving part p. Occlusions are avoided by moving the target
part [9].

lated. By dragging a part with the mouse cursor, it is slid into its explosion direction, continually
updating its offset. In this way, selected parts can be examined in detail by gradually exploding
or collapsing them. The blocking constraints are maintained constantly during the manipulation
due to the system that checks for blocking parts within the explosion graph. If there is a blocking
part found amongst the descendants, further explosion is inhibited. Riffling means that the parts
explode when the mouse cursor slides over them. As long as the cursor moves over the part, it
remains exploded. If the cursor moves on, the explosion is undone. A mouse click prompts the
part to remain exploded. In this way, the user obtains a quick overview in what direction the
parts of the model explode and how certain parts are assembled and connected to each other.

In the higher-level interaction mode the user-selected target parts to explode automatically.
After the user chose the desired targets from a list of model parts, those target parts are labelled
and exposed. All non-target parts are collapsed. This step is implemented with a smooth an-
imation to assure traceability. Exposure is realized with either explosions or a combination of
cutaways and explosions. Exploded views for non-hierarchical models have to meet two con-
ditions. First, each part p must not occlude any target part. Second, if p is a target part itself,
it must not be occluded by any other part. For this reason, each part of the explosion graph is
visited in topological order. If necessary, p is moved in order to not occlude any target part.
Additionally, target parts are emphasized by encapsulation. That means they are separated from
all touching parts (cf. Figure 2.3). To combine cutaways and explosions, the selected target part
is first exposed by a cutaway within its context, then moved away from the rest of the model
through the cutaway hole and finally exploded to reveal all its details. For an effective cutaway,
the explosion direction has to be determined before the translation and the cutaway hole has to
be large enough to let the target part move through.

Bruckner and Gröller introduce a force-directed layout for exploded views of 3D information
in their work about Exploded Views for Volume Data [3]. In their approach, they divide the
volume data into regions with a DOI > 0, and regions with a DOI = 0. All regions with a
DOI > 0 are part of the selection, the other regions belong to the background that represents the
context. While the parts of the background are transformed, the selection remains static. The
background is divided into a user-defined number of parts that do not intersect. Subsequently,
those background parts are moved into different directions to reveal the selection. A parameter
degree-of-explosion (DOE) is introduced to allow the user to control how far the background is
moved away from the selection. If the DOE equals zero, the background is not moved at all
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and clasps the selection. The higher the DOE, the farther the background parts are moved away
from the selection. With the DOE, the view dependency can be reduced and spacing can be
increased. Additionally, physical forces are simulated in a force-directed layout. All parts of the
object are structured in a graph. Within this graph, repulsive forces are assigned to each node
and attractive forces are assigned to adjacent nodes. The aim is to avoid conclusions completely
by the minimum displacement. To achieve a steady state, all forces should be in equilibrium.

A number of forces are defined:

• Return force

• Explosion force

• Viewing force

• Spacing force

The return force attracts the background parts to their original location. The explosion force
pushes them off the selection object. The viewing force causes the background parts to not oc-
clude the selection for the current viewing transformation. This is essential, as the user can rotate
the camera arbitrarily. Finally, the repulsive spacing force prevents the parts from clustering. All
forces, except the return force which remains constant, are scaled with the DOE parameter.

9





CHAPTER 3
Methodology

In this chapter, the creation of plug-ins in VolumeShop is introduced with descriptive code ex-
amples. VolumeShop is an interactive hardware-accelerated application for direct volume illus-
tration [2]. It is designed for developers to have maximum flexibility for visualization research.
Furthermore, common concepts of the OpenGL pipeline and methods for visible-surface detec-
tion are presented.

3.1 Plug-ins in VolumeShop

The functionality of the program is implemented with plug-ins that are functionally independent
components, but its properties can also be linked to those of other plug-ins. In this way, a plug-
in has access to the data of other plug-ins. Plug-ins are hosted by containers that provide all
necessary resources for them [1].

Plug-ins can be dynamically loaded, suspended and resumed at runtime. One main advan-
tage in development is that the application does not need to be closed when a plug-in is recom-
piled. This is possible due to the fact that plug-ins are compiled into Dynamic Link Libraries
(DLLs) that are scanned for changes by VolumeShop. When a change is detected, the plug-in is
reloaded.

Types of plug-ins

In VolumeShop, several types of plug-ins exist:

• Renderers

• Interactors

• Compositors

• Editors
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In short, Renderers are responsible for the way the polygonal objects are displayed, Inter-
actors provide common interaction functionality like cameras, Compositors combine the output
of multiple renderers or interactors and Editors are specialized Graphical User Interface (GUI)
widgets [1].

Properties

The complete state of a plug-in is defined by its properties which constitute the plug-ins’ func-
tionality (cf. Algorithm 3.1) [1].

GetPlugin().GetProperty("Test")= Variant::TypeInteger(12,0,255);

Algorithm 3.1: Creation of the integer property Test in the range between 0 and 255 [1].

For extended functionality there is the possibility of linking properties. The change of a
property causes linked properties to change as well. Creating links in the GUI is performed by
simply right clicking the property with the mouse and choosing the desired linking property.
Links can also be defined programmatically (cf. Algorithm 3.2).

PropertyContainer::Link myLink(pTargetObject,"LinkedProperty");
GetPlugin().SetPropertyLink("MyProperty",myLink);

Algorithm 3.2: Link property MyProperty to property LinkedProperty [1].

Observers

Observers allow tracking changes in properties or other objects. Notifications are bound to mem-
ber functions with the class ModifiedObserver. This class notifies changes from multiple
objects of different types [1]. When an observer is connected to a property and this property is
changed in the GUI, the observer is informed about it through a callback function. Then it can
react appropriately by re-rendering the illustration and updating its attributes (cf. Algorithm 3.3).

1 ModifiedObserver myObserver;
2 myObserver.connect(this,&MyPlugin::changed);
3 GetPlugin().GetProperty("MyProperty1").addObsever(&myObserver);
4 GetPlugin().GetProperty("MyProperty2").addObsever(&myObserver);
5 void changed(const Variant & object, const Observable::Event & event)
6 {
7 GetPlugin().update();
8 }

Algorithm 3.3: Registering observers to properties. Lines 3 and 4 add an observer to the
objects that are to be tracked. Line 7 handles changes in the property such as trigger re-
rendering [1].
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Technologies

The plug-ins are written in C++ using Open Graphics Library (OpenGL) which is a success-
ful cross-platform graphics application programming interface (API) for 2D and 3D computer
graphics [7]. For shading and texturing OpenGL Shading Language (GLSL) is used [1].

3.2 Concept of shaders

In 3D computer graphics objects are described with a set of polygon surface patches and are
called polygonal mesh or simply mesh. Each polygon consists of several vertices that define
edges and faces [6]. With GLSL the shading of the polygons can be modified directly with
programmable shaders, replacing the fixed function pipeline of OpenGL. These shaders are
parallelly executed for every vertex and every fragment in the graphics processing unit (GPU)
and allow the usage of customized effects. In GLSL there are four different types of shaders:

• Vertex shader

• Fragment shader

• Geometry shader

• Tessellation shader

The purpose of the two basic shaders, vertex shader and fragment shader, will be described
in the following section.

Vertex shader

The main purpose of the vertex shader is the computation of the final vertex position. The vertex
data is taken as input. A single vertex can consist of several attributes including position, color
and normal vector. The vertex shader can perform tasks such as [7]:

• transforming the vertex position

• transforming the normal vector and normalizing it

• generating and transforming texture coordinates

• applying light (such as ambient, diffuse and specular) per vertex

• computing per-vertex color
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Fragment shader

After the vertices have been transformed into the view plane they are rasterized. Data defined
as output of the vertex shader is automatically interpolated before it is passed on to the frag-
ment shader. The output of the rasterizer are fragments which contain information about screen
coordinates, depth, color and texture coordinates. The fragment shader defines the final color
of the fragment. As fragments can have the same screen coordinates it is possible that multiple
fragments can contribute to the same pixel in the frame buffer [7]. The fragment shader can
perform tasks such as [7]:

• per-pixel-lighting (using interpolated normals from the vertex shader)

• normal-mapping (looking up normals from a texture)

• bump-mapping (computing normals based on a hight-map of a texture)

The normals obtained from normal-maps and bump-maps are also used for lighting calcula-
tion and result in a better illumination than the computation based on per-pixel-lighting that uses
interpolated normals.

Discarding fragments

In the fragment shader, a break condition is available. The keyword discard drops the cur-
rent processed fragment and exits the shader1. This is useful for speeding up the computation,
because fragments that are not meant to become pixels do not have to be passed on to the next
stage of the OpenGL pipeline.

Per-fragment operations

After the fragment shader, per-fragment-operations like depth-test and stencil-test are performed,
before the fragment color is written to the frame buffer. If blending is enabled the fragment color
is blended with the existing pixel color in the frame buffer.

3.3 Visible-surface detection: image space vs. object space

Visible-surface detection algorithms either operate with object definitions (object-space) or with
projected images (image-space). In this section, algorithms that perform in either one or both
spaces are briefly introduced [6].

Object-space methods

"An object-space method compares objects and parts of objects to each other within the scene
definition to determine which surfaces should be labelled as visible." [6]

1http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/discard.php
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An example for an object-space method would be back-face detection. It decides whether
or not a polyhedron is visible. A back face is determined by checking if the dot product of the
viewing vector V and the normal vector N is greater than zero (cf. Equation 3.1)

V ·N > 0 (3.1)

In object-space, mesh splitting is accomplished by actually splitting the polygons of the
genuine mesh in order to generate two separate meshes. This approach does not require further
modifications in the shader.

Image-space methods

"In an image-space algorithm, visibility is decided point by point at each pixel position on the
projection plane." [6]

Examples for image-space methods would be the scan-line method and the depth-buffer
method. The scan-line method removes hidden surfaces by comparing the depth values of over-
lapping surfaces. The depth-buffer method, also called z-buffer method, compares the depth
value of objects. The surface with the smallest depth is determined as visible.

Mesh splitting in image-space requires rendering the genuine mesh twice and discarding the
dispensable half in the shader respectively.

Hybrid methods

Hybrid methods are methods that operate in both object-space and image-space [6]. Examples
for hybrid methods are:

• Depth-sorting method

• Binary space-partitioning (BSP) tree

The depth-sorting method sorts the surfaces in order of decreasing depth. Sorting is done
in both image-space and object-space. Afterwards, the surfaces are scan converted from back
to front in image space. A BSP tree recursively subdivides a space with partitioning planes
that categorize the surfaces into front objects and back objects. The resulting data structure
is a binary tree. Finally, the objects are painted onto the screen from back to front, so that
foreground objects are painted over the background objects. In BSP trees, convex polygons are
easier to handle than concave polygons, because splitting the latter would always results in two
convex parts.

Effectiveness of visible-surface detection methods

Each objects has its own characteristics and depending on those, the choice of the most effective
visible-surface detection method should be made. Initially, back-face detection is a fast and
effective method to restrict further visibility tests to only visible surfaces. For identifying visible
surfaces, the depth-buffer method is also a fast and simple technique. For meshes with only a
few surfaces, up to a few thousand polygon surfaces, many overlapping surfaces in depth are
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not assumed. Therefore, the depth-sorting method and the BSP tree method would be a good
choice. The scan-line method also performs well for meshes with few surfaces. For meshes
with a higher number of surfaces, using the depth-buffer method is recommended. The depth-
buffer method has a nearly constant processing time, regardless of the number of surfaces of the
mesh [6].

Mesh splitting in object-space is superior, if the rendering operation is costly and the cutting
plane rarely changes. However, the splitting operation is very expensive compared to the split-
ting operation in image-space, which is completely computed in the shader. Mesh splitting in
image-space is superior in case the splitting plane frequently changes and the costs for rendering
the mesh twice are affordable.
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CHAPTER 4
Suggested implementation

In this section a step by step approach to reveal inner structures of a mesh will be discussed.
First a plane needs to be defined that represents the position and direction of the cut. To retain
interactivity, parameters in the VolumeShop interface are available to translate, rotate and scale
the plane. The color and opacity of the plane should be adaptable to not occlude parts of the
mesh. For the mesh splitting an offset is defined that indicates how far the two halves of the
mesh shall be apart from the plane. The larger the gap the better the insight into the model. The
splitting itself is no real translation of the two halves, but the model is rendered twice at different
positions in space parallel to the plane. Respectively, the fragments on the other side of the plane
are discarded and not rendered to create the illusion that the mesh has been split. After the cut,
the back facing triangles become visible in those areas where the model has been cut. Therefore,
the final step is shading these back faces to create shading for the cut surface.

4.1 Definition of the plane

The cutting plane to calculate the cut is defined by a point on the plane and a normal vector. Its
dimension is per definition indefinite. Visually, the plane is represented as a rectangle with a
certain user-defined dimension that is adaptable to the size of the mesh to be split. This gives
the user an idea where the cut in the mesh is performed. Additionally, to increase comprehen-
sion for the user, the color of the plane, its opacity and scaling factor can be set by the user.
The orientation of the cutting plane can be defined with properties like translation and rotation
vectors that influence the calculation of the mesh splitting directly (cf. Algorithm 4.1). To apply
changes made in the interface immediately, an observer for the property has to be added (cf.
Algorithm 4.2 and Chapter 3.1).

Before drawing the plane, the Viewing Transformation Matrix is loaded. This matrix is for
transforming the coordinates from world space into viewing space [6]. Then the plane is adjusted
by its affine transformations (cf. Algorithm 4.3). All parameters passed are of the type float
and taken from the user input.
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GetPlugin().GetProperty("Plane
Translation").require(Variant::TypeVector(Vector(0.0f, 0.0f, 0.0f)));

Algorithm 4.1: Property for translation of the plane named Plane Translation of the type
Vector with a default value of (0.0, 0.0, 0.0). Defining a name and a type for a property is
mandatory.

GetPlugin().GetProperty("Plane
Translation").addObserver(&m_modVariantObserver);

Algorithm 4.2: Adding an observer to the property Plane Translation.

1 glTranslatef(planeTranslation.GetX(), planeTranslation.GetY(),
planeTranslation.GetZ());

2 glRotatef(planeRotationAngle, planeRotation.GetX(), planeRotation.GetY(),
vecPlaneRotation.GetZ());

3 glScalef(planeScaling.GetX(), planeScaling.GetY(), planeScaling.GetZ());

Algorithm 4.3: OpenGL commands for translating (cf. Line 1), rotating (cf. Line 2) and
scaling (cf. Line 3) the plane. These OpenGL commands do not accept vectors as parameters,
hence the x-, y- and z-coordinates are taken from each property respectively and handed over
as floating point values.

The color of the plane is handed over from the input panel, normalized, and passed on to the
renderer. An example for achieving this in VolumeShop is shown in Algorithm 4.4.

glColor4f(planeColor.GetNormalizedRed(), planeColor.GetNormalizedGreen(),
planeColor.GetNormalizedBlue(), planeColor.GetNormalizedAlpha());

Algorithm 4.4: The individual color channels are taken from the user-defined input vector and
used as input parameters for the OpenGL command glColor4f.

OpenGL supports several basic graphics primitives by default [7]. For the purpose as a
visual helper the plane is displayed as a square with side length two. Note that the plane is
also scalable to account for meshes of various sizes. The commands for drawing the square are
shown in Algorithm 4.5. Figure 4.1 shows a few examples of possible plane positions.

4.2 Splitting the mesh

The splitting offset is implemented as an VolumeShop user interface parameter. If the parameter
is set to zero the mesh does not seem to be split, although it is still rendered twice. The larger
the value of the offset the bigger the distance between the two halves of the mesh. An observer
for the offset needs to be added as well (cf. Chapter 3.1 and Chapter 4.1).
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glBegin(GL_QUADS);
glNormal3f(0, 0, 1);
glVertex3f(-1, -1, 0);
glVertex3f(1, -1, 0);
glVertex3f(1, 1, 0);
glVertex3f(-1, 1, 0);

glEnd();

Algorithm 4.5: A quad primitive with side length 2 and depth 0.

Figure 4.1: Example of a plane with a different rotation of the normal vectors. The vectors from
left to right: (0,1,0); (1,0,0); (1,0,1).

Rotation of the planes’ normal vector

The normal of the plane has been defined as (0.0,0.0,1.0), but regarding that the normal
vector is still located in the object space of the plane, it needs to be transformed into the same
space as the mesh. This is being done by rotating the normal by the same amount as the plane is
rotated in the interface (cf. Algorithm 4.6).

glRotatef(rotationAngle, rotationVector.GetX(), rotationVector.GetY(),
rotationVector.GetZ());

Algorithm 4.6: The user-defined properties rotation angle and rotation vector reveal the rota-
tion matrix.

The rotation matrix could also be calculated using the generally known formulas [7]:

x-roll:

Rx(β) =


1 0 0 0
0 cos(β) − sin(β) 0
0 sin(β) cos(β) 0
0 0 0 1

 (4.1)

19



y-roll:

Ry(β) =


cos(β) 0 sin(β) 0

0 1 0 0
− sin(β) 0 cos(β) 0

0 0 0 1

 (4.2)

z-roll:

Rz(β) =


cos(β) − sin(β) 0 0
sin(β) cos(β) 0 0

0 0 1 0
0 0 0 1

 (4.3)

It should be considered that 3D rotation matrices do not commute [7], so the order of mul-
tiplication matters. Subsequently, the rotated normal vector is multiplied with the model view
matrix to transform the vector in model view space before it is normalized. After normalization
the normal vector has a value between 0 and 1 (cf. Algorithm 4.7).

planeNormal.normalize();

Algorithm 4.7: Normalizing the plane normal

Translating the mesh

The mesh is translated by an offset in the direction of the normal vector. The command in
OpenGL for translation is glTranslatef. Before the mesh is rendered the shader needs to
be bound.

1 Vector meshTranslation = planeNormal · offset;
2 glTranslatef(meshTranslation.GetX(), meshTranslation.GetY(),

meshTranslation.GetZ());
3 m_shaShader.bind();
4 renderMesh(*pMesh);
5 m_shaShader.release();

Algorithm 4.8: The value of the mesh translation is defined (cf. Line 1). Afterwards, the
translation is applied (cf. Line 2). Before rendering the mesh (cf. Line 4), the shader needs to
be bound (cf. Line 3).

As stated previously, the mesh is rendered twice to create the illusion of a mesh that is
dragged apart. Therefore, the mesh needs to be rendered again with a translation in the opposite
direction. In VolumeShop, the two meshes are displayed with a plane in between. The distance
of the meshes is twice the offset (cf. Figure 4.2).
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(a) Same shading as for front faces (b) Same shading as for front faces

Figure 4.2: The mesh with (a) no offset and (b) with offset applied.

Discarding dispensable fragments

To eliminate the pixels from the other side of the plane of each mesh respectively, it has to be
determined on which side of the plane a pixel lies. The computation is performed in the fragment
shader (cf. Algorithm 4.9).

if (N · (v - p)) <= 0.0 then
discard;

end
Algorithm 4.9: The dot product of the plane normal N and the vertex position v subtracted by
a point on the plane p states if the vertex is in front of or behind the cutting plane. A value
greater than zero states that the point is in front of the plane. In case the point is behind the
plane, it is discarded.

Before the mesh is rendered, the normal of the plane as well as a point on the plane must
be passed to the shader as uniforms1 (cf. Algorithm 4.10). For the first half of the mesh the
normal vector remains unchanged, for the second one inverted. The point on the plane has to be
determined in respect of the plane translation.

4.3 Shading the mesh

The back faces of the mesh still have the same color as the front faces, what makes it look unreal
(cf. Figure 4.3a). Therefore, the back faces have to be shaded in a different color. GLSL has an
built-in variable gl_FrontFacing to check if the fragment is front facing. Algorithm 4.11
shades all back facing fragments red.

1A uniform is a type designation. It is passed from the application to the shader. Its value in the shader is constant
and never changes.
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1 glUniform3f(m_shaShader.GetUniformLocation("planeNormal"),
planeNormal.GetX(), planeNormal.GetY(), planeNormal.GetZ());

2 glUniform3f(m_shaShader.GetUniformLocation("planePoint"),
vecPlaneTranslation.GetX(), vecPlaneTranslation.GetY(), vecPlaneTranslation.GetZ());

Algorithm 4.10: Passing on the uniforms for planeNormal (cf. Line 1) and planePoint
(cf. Line 2) to the shader.

if (!gl_FrontFacing) then
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

end
Algorithm 4.11: Flat shading all back facing fragments red (cf. Figure 4.3b).

Shading the back facing fragments

To add the impression of depth, lighting of the back facing fragments is being done using the
Blinn-Phong shading model (cf. Algorithm 4.12) [6]. The result is a hollow appearance of the
inside of the mesh (cf. Figure 4.3c).

1 void main()
2 {
3 vec3 v = normalize(vertexPosition);
4 vec3 n = normalize(vertexNormal);

5 if (!gl_FrontFacing) then
6 directionalLight(gl_LightSource[0], -n, v, 0.7, ambient, diffuse,

specular);
7 color.rgb = ((ambient · vec4(1.0, 0.1, 0.0, 1.0)) + (diffuse · vec4(1.0, 0.1,

0.0, 1.0)) + (specular · vec4(1.0, 1.0, 1.0, 1.0))).rgb;
8 color.a = 1.0;
9 color = clamp(color, 0.0, 1.0);

10 end
11 gl_FragColor = color;
12 }

Algorithm 4.12: Shading the back facing fragments. First, a function is called to compute the
light factors with the Blinn-Phong shading model. The input parameters are the light source
of the directional light gl_LightSource[0], the inverted vertex normal -n, the vertex position
v and the shininess of the material. The output parameters are ambient, diffuse and specular
light values (cf. Line 6). Subsequently, the material colors are weighted with the previously
computed light factors (cf. Line 7). The opacity is determined in Line 8, then the color is
clamped to a value between 0 and 1 (cf. Line 9). Finally, the fragment color is determined
(cf. Line 11).
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Shading the cut surface

"Cut surfaces are interior surfaces of solid objects that are made visible by the cutaway ac-
tion." [4]

To smoothly shade the cut surface, the normals of the visible back faces of the mesh are
replaced by the inverse normal vector of the plane. With this approach, the shading is dependent
on the viewing direction, so the reflection on the cut surface changes when the model is rotated.
For the implementation of shading cut surfaces, the Blinn-Phong shading model is used. The
difference to the approach stated previously (cf. Algorithm 4.12) is that the lighting function is
called with a different normal (cf. Algorithm 4.13).

n = planeNormal;

Algorithm 4.13: The vertex normal in Algorithm 4.12 is replaced with the plane normal
(cf. Line 4).

The result looks like in Figure 4.3d. The illustration shows a slightly rotated model to point
out that the light changes with the viewing perspective, so the left half appears less illuminated
than the right half.
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(a) Same shading as for front faces (b) Flat shading

(c) Blinn-Phong shading (d) Cut surface shading

Figure 4.3: Different methods of shading the back faces: (a) no special treatment, (b) flat shad-
ing, (c) Blinn-Phong shading, (d) cut surface shading.
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CHAPTER 5
Conclusion

The revelation of occluded objects in order for examination is a complex challenge. In my thesis
I presented several approaches that provide different solutions for revealing regions of interest
within complex 3D data. Solutions for both volume data and polygonal meshes were adduced
with techniques for ghosting, cutaways and exploded views. Furthermore, VolumeShop, a de-
veloper tool for visualization research has been described. Its main advantage is the flexible,
adaptive and plug-in based concept that lets users develop the optimal solution for their indi-
vidual needs. Finally, I demonstrated the implementation of a simple algorithm to split meshes
in VolumeShop. My implementation of splitting a mesh combined several existing approaches.
The cutaway was covered by adjusting a plane to define the prospective cut and combined with
a technique similar to an exploded view, implemented with a property in the user interface to
adjust the degree-of-explosion. Moreover, an appropriate shading for the revealed structure can
be chosen, depending on individual requirements.

The main advantage of my algorithm is that regardless of the complexity of the mesh, it has a
stable performance as the dispensable fragments are simply discarded in the shader. A frequent
adaption of the cutting plane has merely an influence on the performance. The disadvantage of
this method is that the mesh has to be rendered twice. Hence, in case of huge meshes that in-
crease the costs of the rendering significantly, an implementation of the mesh splitting algorithm
in object-space should be preferred. Splitting meshes in image-space is superior, if the costs of
rendering the mesh twice are affordable and if the cutting plane is adapted frequently.
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